If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-14x=36
We move all terms to the left:
x^2-14x-(36)=0
a = 1; b = -14; c = -36;
Δ = b2-4ac
Δ = -142-4·1·(-36)
Δ = 340
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{340}=\sqrt{4*85}=\sqrt{4}*\sqrt{85}=2\sqrt{85}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{85}}{2*1}=\frac{14-2\sqrt{85}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{85}}{2*1}=\frac{14+2\sqrt{85}}{2} $
| -(x-4)-x=2 | | 11/121=3/x | | 4z+1-4z=1+z | | 1y+5y+18=-6 | | 3(x+7)-25=0 | | 2(2x+8)+8=-24 | | 13x=5x+56 | | 90/130=8/x | | x(x-14)=36 | | 2(3x+2)-3=-(-x+4) | | 2(x+4)-x=-12 | | 8x–7x=2,060 | | x(2)-40=-5 | | t÷6-4=12 | | 8x+8-7x=16 | | 23=3-4u | | x^2+9/16x-100=0 | | 6x²+20x+6=0 | | 5x-4=114 | | 5+4x+5+x=-10 | | 2t^2-15t+18=0 | | 0=-4x^2+6x | | 7x-248=88 | | 3(x-6)+6=-18 | | F(x)=(x3-7)(2x2+3) | | 0=-4x+6x | | 6x-4=4(-2x+27) | | 6p+7p-3p-4p=72 | | -y-y+8=12 | | F(x)=10x2+9x-4 | | a÷3+3=12 | | 2y+8-y=-12 |